Solution 7

1. Consider maps from \mathbb{R} to itself. Provide explicit examples of continuous maps with exactly one, two and three fixed points.
Solution. Let f be our function. We consider $g(x)=f(x)-x$. It suffices to produce examples with exactly one, two and three roots. For instance, $g_{1}(x)=-x$ has exactly one root. $g_{2}(x)=x^{2}-1$ has exactly two roots. $g_{3}(x)=(x-1)(x-2)(x-3)$ has exactly three roots. The corresponding f_{1}, f_{2}, f_{3} fulfil our requirement.
2. Show that the equation $x=\frac{1}{2} \cos ^{2} x$ has a unique solution in \mathbb{R}.

Solution. Let $T x=\frac{1}{2} \cos ^{2} x$. Then $T^{\prime}(x)=-\frac{1}{2} \sin 2 x$ so $\left|T^{\prime}\right| \leq 1 / 2$. It follows that $|T x-T y| \leq \frac{1}{2}|x-y|, T$ is a contraction. By the fixed point theorem, we conclude that $x=\frac{1}{2} \cos ^{2} x$ has a unique solution.
3. Let T be a continuous map on the complete metric space X. Suppose that for some k, T^{k} becomes a contraction. Show that T admits a unique fixed point. This generalizes the contraction mapping principle in the case $k=1$.
Solution. Since T^{k} is a contraction, there is a unique fixed point $x \in X$ such that $T^{k} x=x$. Then $T^{k+1} x=T^{k} T x=T x$ shows that $T x$ is also a fixed point of T^{k}. From the uniqueness of fixed point we conclude $T x=x$, that is, x is a fixed point for T. Uniqueness is clear since any fixed point of T is also a fixed point of T^{k}.
4. Show that the equation $2 x \sin x-x^{4}+x=0.001$ has a root near $x=0$.

Solution. Here $\Psi(x)=2 x \sin x-x^{4}$. We need to find some r, γ so it is a contraction. We have

$$
\begin{aligned}
\left|\Psi\left(x_{1}\right)-\Psi\left(x_{2}\right)\right| & =\left|2 x_{1}\left(\sin x_{1}-\sin x_{2}\right)+2\left(x_{1}-x_{2}\right) \sin x_{2}-\left(x_{1}^{4}-x_{2}^{4}\right)\right| \\
& =\left|2 x_{1} \cos c\left(x_{1}-x_{2}\right)+2\left(x_{1}-x_{2}\right) \sin x_{2}-\left(x_{1}^{2}+x_{2}^{2}\right)\left(x_{1}+x_{2}\right)\left(x_{1}-x_{2}\right)\right| \\
& \leq\left(2 r+r+\left(2 r^{2}\right)(2 r)\right)\left|x_{1}-x_{2}\right|
\end{aligned}
$$

Taking $r=1 / 4, \gamma=2 r+r+\left(2 r^{2}\right)(2 r)=13 / 16<1$. By the Perturbation of Identity Theorem, the equation $2 x \sin x-x^{4}+x=y$ is solvable for any y satisfying $|y| \leq R=$ $(1-\gamma) r=0.0468$, including $y=0.001$.
5. Can you solve the system of equations

$$
x+y^{4}=0, \quad y-x^{2}=0.015 ?
$$

Solution. Here we work on \mathbb{R}^{2} and $\Phi(x, y)=(x, y)+\Psi(x, y)$ where $\Psi(x, y)=\left(-y^{4}, x^{2}\right)$. We have $\Phi(0,0)=(0,0)$ and want to solve $\Phi\left(x_{1}, x_{2}\right)=(0,0.015)$. In the following points in \mathbb{R}^{2} are denoted by $p=\left(x_{1}, y_{1}\right), q=\left(x_{2}, y_{2}\right)$, etc.

$$
\begin{aligned}
\|\Psi(p)-\Psi(q)\|_{2} & =\left\|\left(-y_{1}^{4}+y_{2}^{4}, x_{1}^{2}-x_{2}^{2}\right)\right\|_{2} \\
& =\|\left(\left(y_{1}^{2}+y_{2}^{2}\right)\left(y_{1}+y_{2}\right)\left(y_{2}-y_{1}\right),\left(x_{1}+x_{2}\right)\left(x_{1}-x_{2}\right) \|_{2}\right. \\
& \leq \sqrt{\left(2 r^{2} \times 2 r\right)^{2}+(2 r)^{2}}\|p-q\|_{2} \\
& =2 r\left(1+4 r^{2}\right)\|p-q\|_{2} .
\end{aligned}
$$

(We have used $\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right| \leq\|p-q\|_{2}$.) Hence by taking $r=1 / 4, \gamma=5 / 8$ and $R=3 / 24=0.125$. As $0.015<0.125$, the system is solvable.
6. Can you solve the system of equations

$$
x+y-x^{2}=0, \quad x-y+x y \sin y=-0.002 ?
$$

Hint: Put the system in the form $x+\cdots=0, \quad y+\cdots=0$, first.
Solution. First we rewrite the system in the form of $I+\Psi$. Indeed, by adding up and subtracting the equations, we see that the system is equivalent to

$$
x+\left(-x^{2}+x y \sin y\right) / 2=-0.001, \quad y+\left(-x^{2}-x y \sin y\right) / 2=0.001 .
$$

Now we can take

$$
\Psi(x, y)=\frac{1}{2}\left(-x^{2}+x y \sin y,-x^{2}-x y \sin y\right)
$$

and proceed as in the previous problem.
7. Let $A=\left\{a_{i j}\right\}$ be an $n \times n$ matrix. Show that

$$
|A x| \leq \sqrt{\sum_{i, j} a_{i j}^{2}}|x| .
$$

Solution. Let $y=A x$. We have

$$
y_{i}=\sum_{j} a_{i j} x_{j}, \quad i=1, \cdots, n .
$$

By Cauchy-Schwarz Inequality,

$$
\left|y_{i}\right| \leq \sqrt{\sum_{j} a_{i j}^{2}} \sqrt{\sum_{j} x_{j}^{2}} .
$$

Taking square,

$$
y_{i}^{2} \leq \sum_{j} a_{i j}^{2} \sum_{j} x_{j}^{2} .
$$

Summing over i,

$$
\sum_{i} y_{i}^{2} \leq \sum_{i, j} a_{i j}^{2} \sum_{j} x_{j}^{2},
$$

and the result follows by taking root.
Note. This result was used in the proof of Proposition 3.5.
8. Let $A=\left(a_{i j}\right)$ be an $n \times n$ matrix. Show that the matrix $I+A$ is invertible if $\sum_{i, j} a_{i j}^{2}<1$. Give an example showing that $I+A$ could become singular when $\sum_{i, j} a_{i j}^{2}=1$.
Solution. Let $\Phi(x)=I x+A x$ so that $\Psi(x)=A x$ for $x \in \mathbb{R}^{n}$. By the previous problem,

$$
\left|\Psi\left(x_{1}\right)-\Psi\left(x_{2}\right)\right|=\left|A\left(x_{1}-x_{2}\right)\right| \leq \sqrt{\sum_{i, j} a_{i j}^{2}}|x| .
$$

Take $\gamma=\sqrt{\sum_{i, j} a_{i j}^{2}}<1$. Ψ is a contraction and there is only one root of the equation $\Phi(x)=0$ in the ball $B_{r}(0)$. However, since we already know $\Phi(0)=0,0$ is the unique root. Now, we claim that $I+A$ is non-singular, for there is some $z \in \mathbb{R}^{n}$ satisfying $(I+A) z=0$,
we can find a small number α such that $\alpha z \in B_{r}(0)$. By what we have just shown, $\alpha z=0$ so $z=0$, that is, $I+A$ is non-singular and thus invertible.
The sharpness of the condition $\sum a_{i j}^{2}<1$ can be seen from considering the 2×2-matrix A where all $a_{i j}=0$ except $a_{22}=-1$.

Note. See how linearity plays its role in the proof.
9. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be C^{2} and $f\left(x_{0}\right)=0, f^{\prime}\left(x_{0}\right) \neq 0$. Show that there exists some $\rho>0$ such that

$$
T x=x-\frac{f(x)}{f^{\prime}(x)}, \quad x \in\left(x_{0}-\rho, x_{0}+\rho\right),
$$

is a contraction. This provides a justification for Newton's method in finding roots for an equation.
Solution. $T^{\prime}(x)=\frac{f(x) f^{\prime \prime}(x)}{f^{\prime}(x)^{2}}$. Since f is C^{2} and $f\left(x_{0}\right)=0, f^{\prime}\left(x_{0}\right) \neq 0$, it follows that T is C^{1} in a neighborhood of x_{0} with $T\left(x_{0}\right)=x_{0}, T^{\prime}\left(x_{0}\right)=0$ and there exists some $\rho>0$

$$
\left|T^{\prime}(x)\right| \leq \frac{1}{2}, \quad x \in\left[x_{0}-\rho, x_{0}+\rho\right] .
$$

As a result, T is a contraction in $\left[x_{0}-\rho, x_{0}+\rho\right]$. By Contraction Mapping Principle, there is a fixed point for T. From the definition of T, this fixed point is a root for the equation $f(x)=0$.
10. Consider the iteration

$$
x_{n+1}=\alpha x_{n}\left(1-x_{n}\right), x_{1} \in[0,1] .
$$

Find
(a) The range of α so that $\left\{x_{n}\right\}$ remains in $[0,1]$.
(b) The range of α so that the iteration has a unique fixed point 0 in $[0,1]$.
(c) Show that for $\alpha \in[0,1]$ the fixed point 0 is attracting in the sense: $x_{n} \rightarrow 0$ whenever $x_{0} \in[0,1]$.

Solution. Let $T x=\alpha x(1-x)$. The max of T attains at $1 / 2$ so the maximal value is $\alpha / 4$. Therefore, the range of α is $[0,4]$ so that T maps $[0,1]$ to itself. Next, 0 is always a fixed point of T. To get no other, we set $x=\alpha x(1-x)$ and solve for x and get $x=(\alpha-1) / \alpha$. So there is no other fixed point if $\alpha \in[0,1]$. Finally, it is clear that T becomes a contraction when $\alpha \in[0,1)$, so the sequence $\left\{x_{n}\right\}$ with $x_{0} \in[0,1], x_{n}=T^{n} x_{0}$, always tends to 0 as $n \rightarrow \infty$. Although T is not a contraction when $\alpha=1$, one can still use elementary mean (that is, $\left\{x_{n}\right\}$ is always decreasing,) to show that 0 is an attracting fixed point.

